Some more expressions from Rational Number Series

Author
Ganesan Kirtivasan, AGM(A,C\&IT), RDCIS, SAIL, Ranchi, Jharkhand - 834 002, India.

Abstract

The author had submitted a paper on 'Rational Number Series ${ }^{[1]}$. After this a paper on 'A few expressions from Rational Number Series ${ }^{[2]}$ was submitted. Some more expressions got evolved in the past few days. These are being outlined in this paper.

Keywords

Expressions, rational number series, Arithmetic Geometric Progression, Gamma function;

Introduction

The expression $\frac{(m n+m-1)}{(m n+m)}-\frac{(m n-1)}{m n}$ can be used to generate many expressions which are interesting. 'A few expressions from Rational Number Series ${ }^{[2]}$ has been developed from this basic expression. The very same expression is also used for making expressions in this paper too.

Expression 1

$$
\sum_{k=0}^{n}\binom{n}{k}\left(\frac{n}{(n+1)}-\frac{(n-1)}{n}\right)^{-1}=\sum_{k=1}^{n}\binom{k}{1}\left(\frac{(1+n)}{n}+\frac{(n-1)}{n}\right)^{(n+1)}
$$

Expression 2

$$
\sum_{k=0}^{n}\binom{n}{k}\left(\frac{(m n+m-1)}{(m n+m)}-\frac{(m n-1)}{(m n)}\right)=\left(2^{(n+1)}\right)(m) \sum_{k=1}^{n}\binom{k}{1}
$$

Expression 3

$$
\int_{1}^{\infty}\left(\frac{(m n+m-1)}{(m n+m)}-\frac{(m n-1)}{(m n)}\right) d n=\log (2) \sum_{1}^{\infty}\left(\frac{(m n+m-1)}{(m n+m)}-\frac{(m n-1}{(m n)}\right)
$$

Expression 4

$$
\sum_{n=1}^{\infty} \frac{n}{(n+1)} i^{n}=\left(1-\frac{\pi}{4}\right)-i\left(\frac{\log (2)}{2}\right)
$$

Expression 5

$$
\sum_{i=0}^{\infty} \frac{n}{(n+1)^{2}} i^{n}=\frac{(\pi-4 C-\log (4))}{8}+i\left(\frac{\pi^{2}}{48}-\frac{\log (2)}{2}\right)
$$

C - Catalan's constant

Expression 6

$$
\begin{aligned}
& \left(\frac{A G P(1 \text { st term })!}{A G P(2 \text { nd term })!}-\frac{A G P((n-1) \text { th term })!}{A G P(n \text { nth term })!}\right) \\
& \quad=\Gamma(\text { common ratio of the } G P)\left(\frac{A G P((n-1) \text { th term })}{A G P(n \text { nth term })}-\frac{A G P(1 \text { st term })}{A G P(2 \text { nd term })}\right)
\end{aligned}
$$

where AGP stands for Arithmetic Geometric Progression and $\Gamma(x)$ is the gamma function

Expression 7

$$
\begin{gathered}
\sum_{n=1}^{\infty}\left(\frac{n}{(n+1)}-\frac{(n-1)}{n}\right)=\sum_{n=1}^{\infty} \frac{2}{(2 n-1)(2 n+1)}=1 \\
\int_{1}^{\infty}\left(\frac{2 n}{(2 n+1)}-\frac{(2 n-2)}{(2 n-1)}\right) d n=\int_{1}^{\infty} \frac{2}{(2 n-1)(2 n+1)} d n=0.54931 \ldots .
\end{gathered}
$$

Conclusion

In total seven expressions have been submitted in this paper. The concept of Rational Number Series can be more widely used.

References

1. Kirtivasan Ganesan, Rational Number Series, June 2019 http://www.jetir.org/papers/JETIR1907J15.pdf (www.jetir.org (ISSN -2349-5162))
2. Kirtivasan Ganesan, A few expressions from Rational Number Series, December 2020 http://www.jetir.org/papers/JETIR2022024.pdf (www.jetir.org (ISSN -2349-5162))
